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Filiera tehnologica : profil tehnic

BAREM DE CORECTARE CLASA A IX A

1.
Se consideră funcţiile 
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a) Dacă 
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b) Dacă 
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, rezolvaţi ecuaţia 
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, în mulţimea numerelor reale.

Soluţie:

a) 
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Prin reducere la absurd  obţine a = m şi b = n , deci  
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b) din relaţia 
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 obţine 4024a+2b=4024m+2n ................ 2p

Obţine 2012 a+b=2012m+n deci 
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 ,iar x=2012 este soluţie .............................. 2p

2. 
Se consideră paralelogramul ABCD   iar M este un punct astfel încât 
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Soluţie:

Un model de rezolvare este următorul :

Din triunghiul ABM putem scrie 
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Din triunghiul ADM putem scrie 
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Prin adunare obţinem 
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    (1) ............................................................ 1p

Deoarece ABCD este paralelogram 
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Deoarece 
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, prin înlocuire  în  (1), obţinem 
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Finalizare 
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3. 
Numim operaţie împărţirea unui pătrat în patru părţi egale prin drepte paralele cu ambele perechi de laturi opuse şi haşurarea uneia dintre părţile rezultate. Unui pătrat de latura 1 îi aplicăm în primul pas această operaţie. În pasul doi fiecărui pătrat rămas nehaşurat din pasul anterior  îi aplicăm din nou câte o operaţie. În continuare, la fiecare pas, se aplică câte o operaţie fiecărui pătrat rămas nehaşurat în pasul anterior.


a) Asupra câtor pătrate se aplică câte o operaţie la pasul 5 ?


b) Ce parte din pătratul iniţial a rămas nehaşurată în urma aplicării operaţiilor în 2012 paşi succesivi?

Soluţie:

a) Prin operaţie fiecare pătrat este împărţit în patru pătrate şi numai unul va fi haşurat, deci la fiecare pas numărul pătratelor asupra cărora se efectuează operaţia va fi de trei ori mai mare decât numărul pătratelor asupra cărora s-a efectuat operaţia la pasul anterior. ......................................... 2p

Obţine ca  operaţia de la pasul 5 se aplica unui număr de 81 de pătrate .......................................... 2p

b) La fiecare operaţie aria suprafeţei ramase scade cu 
[image: image27.wmf]1
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 din suprafaţa existenta de la pasul precedent ........................................................................................................................................... 1p

Daca s este  aria suprafeţei iniţiale, atunci  în urma haşurărilor vor rămâne nehasurate suprafeţele 
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.  La final vom avea rămas  
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4.
Un automobil are consum diferenţiat la 100 km  după cum  se deplasează pe drum drept ,  la coborâre   sau la urcare  astfel : pe drum drept consumul este de 7 l la 100 km, la urcare consumul este de 9 l la 100 km ,iar la coborâre consumul este de 5 l la 100 km. Ştiind că pentru a ajunge din localitatea A în localitatea B o maşină parcurge cele trei tipuri de drum cu un consum total de 39 litri de benzina , iar pentru a ajunge din B în A maşina consumă 45  litri de benzina se cere să se determine ce distanţă este între  localităţile A şi B.

Soluţie:

Daca a, b, c sunt distantele (in km) parcurse pe drum  drept,  la urcare respectiv coborâre    atunci consumul va fi:
0,07 a – pentru parcurgerea drumului drept




0,09 b – pentru parcurgerea drumului la urcare




0,05 c – pentru parcurgerea drumului la coborâre  ....................................... 1p

Aşadar vom putea scrie: 

- referitor la consumul de combustibil de la A la B 
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 ............................ 1p

- referitor la consumul de combustibil de la B la A 
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 ............................ 2p

Adunând ultimele doua relaţii obţinem  
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 .......................................................... 2p             

Se obţine  a+b+c=60 km .................................................................................................................. 1p

BAREM DE CORECTARE CLASA A X A

1.
Se consideră numărul real x = 
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Soluţie:

a) 
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b) 
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Observaţie: Daca demonstrează direct 
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2. 
Fie funcţia f: A
[image: image44.wmf]®

A injectivă, unde A = {1, 2,…, 100 }.

a) Demonstraţi că funcţia f este surjectivă;

b) Determinaţi funcţia f ştiind că 
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Soluţie:
a) Funcţia f injectivă 
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{f(1), f(2), …, f(100)} = {1, 2, …, 100} .......................................................................................... 1p

Funcţia f este surjectivă .................................................................................................................... 1p

b) 
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f(1)=100, f(2)=99,…,f(100)=1 ......................................................................................................... 1p

f(x)=101-x, 
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3. 
Se consideră numărul complex 
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 a) Demonstraţi  că z2+z+1=0;

 b) Determinaţi 
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 c)  Demonstraţi că 
[image: image52.wmf]{

}

.

,

1

,

0

N

n

S

n

Î

"

Î


Soluţie:

Obţine 
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z2 +z +1 = 0 ...................................................................................................................................... 1p

b)  z3 = 1 ........................................................................................................................................... 1p

Obţine 
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c)  S3k+2 = 0, S3k+1 = 
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, S3k =1 deci 
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4. 
Bazinul de apă potabilă  dintr-o localitate are forma unui paralelipiped dreptunghic, având drept bază un dreptunghi cu dimensiunile de 30 m , respectiv 20 m. În bazin , apa se află la înălţimea de 10 m, iar gura de evacuare a impurităţilor de pe suprafaţa apei se află la înălţimea de 11, 215 metri fata de bază. Impurităţile se elimină dacă apa este la minim 3 cm deasupra bazei gurii de evacuare. În bazin este introdus un corp cubic  cu latura de 9,1 m care este aşezat cu o faţă pe baza bazinului. Justificaţi dacă, în această situaţie, se vor elimina impurităţile de pe suprafaţa apei. ( Se pot utiliza formulele 
[image: image60.wmf]3
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Soluţie:

Obţine volumul apei existente în bazin 6000 metri cubi .................................................................. 1p

Deduce necesitatea ridicării apei cu încă 1, 215 m ........................................................................... 2p

Obţine volumul necesar de apa    30x20x1,215=729 metri cubi  ..................................................... 1p

Cubul cu latura de 9,1 dislocă un volum de apa de 753,571 metri cubi  .......................................... 1p

Diferenţa de 24,571 metri cubi  face ca apa sa se ridice la 4 cm  deasupra gurei de evacuare, 

deci răspunsul este afirmativ ............................................................................................................ 2p

BAREM DE CORECTARE CLASA A XI A

1. 
Se consideră matricea 
[image: image61.wmf](
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a) Calculaţi 
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b) Deduceţi că 
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c) Dacă 
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, determinaţi valorile lui x pentru care matricea B este inversabilă  (det B
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Soluţie:

a) Obţine 
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b) Calculează 
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Calculează 
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c) Obţine 
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Obţine 
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 Din condiţia 
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 obţine 
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2. 
Un tablou matricial de tipul n(n este organizat numai cu elemente ale mulţimii An = {1,2,3,...,n} dispuse astfel încât pe fiecare linie şi fiecare coloană să apară toate elementele mulţimii An  şi ele să fie dispuse simetric faţă de diagonala principală a tabloului.


a)  Pentru n = 3 construiţi doua astfel de tablouri asociate mulţimii 
[image: image74.wmf]3
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b)  Demonstraţi că cele două matrice anterior construite au acelaşi determinant.


c)  Pentru n = 2013 demonstraţi că pe diagonala principală a tabloului  asociat mulţimii 
[image: image75.wmf]2013
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 apar toate elementele mulţimii 
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Soluţie:

a) Doua exemple pot fi 
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 ........................................................................ 2p

b) Calculează determinanţii şi verifica egalitatea   ........................................................................... 2p

c) Orice element apare în tablou de exact 2013 ori  ......................................................................... 1p

Din modul de construcţie a tabloului rezulta ca numărul apariţiilor în tablou, cu excepţia diagonalei principale, este par ............................................................................................................................ 1p

Pentru a avea 2013 apariţii în tablou, în mod necesar, fiecare element apare şi pe diagonala principala  ......................................................................................................................................... 1p

3.
 a) Calculaţi 
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b) Calculaţi 
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c) Dacă 
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Soluţie:

a) 
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b) 
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c) Obţine 
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Calculează 
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Finalizare  
[image: image88.wmf]0
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Observaţie: Pentru alta metoda de calcul corect se acorda punctajul maxim corespunzător.

4. 
Fie funcţiile 
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Dacă 
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 se cere :

a) Să se determine f(x)

b) Să se determine asimptotele la graficul funcţiei f(x).

c) Să se determine k
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Soluţie:

a) Obţine 
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Determina 
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b) Deoarece 
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Deoarece 
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 obţinem ca x=-1 este asimptota verticala pentru graficul funcţiei f(x) ....................................................................................................................................... 1p
Deoarece 
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 obţinem ca şi dreapta x=1 este asimptota verticala pentru graficul funcţiei f   .......................................................................................................................................... 1p

c) Obţine 
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BAREM DE CORECTARE CLASA A XII A

1. 
Se consideră mulţimea 
[image: image102.wmf]{
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a) Să se verifice dacă matricile 
[image: image103.wmf]56
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b) Să se demonstreze că dacă 
[image: image105.wmf]AG
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c) Justificaţi dacă există matrici A şi B  din mulţimea G astfel încât 
[image: image107.wmf]ABG
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Soluţie:

a) Obţine det(A) = -1, deci matricea A aparţine mulţimii G  ........................................................... 2p

Obţine det(B) = -4023, deci matricea B nu aparţine mulţimii G  ..................................................... 2p

b) daca A 
[image: image108.wmf]Î
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  .................. 2p

c) Utilizând det(AB) = det (A)det(B) obţine ca AB nu aparţine mulţimii G  ...................................1p

2.
a) Pentru funcţia 
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Interpretaţi geometric rezultatul .


b) Determinaţi numărul real t  astfel încât  funcţia 
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c) Să se justifice că putem construi un număr de 2012 funcţii 
[image: image115.wmf]:
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Soluţie:

a) Obţine 
[image: image117.wmf]1
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Interpretare geometrica „ Pentru 
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b) Calculează 
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Obţine t = 2012 ................................................................................................................................. 1p

c) Alege
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3.
Fie 
[image: image122.wmf]MC
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(1) 
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(2) pentru orice  a, b 
[image: image124.wmf]MabM
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a) Demonstraţi că mulţimea 
[image: image125.wmf]{
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b) Demonstraţi că (-4) 
[image: image126.wmf]M
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c) Justificaţi dacă este posibil ca mulţimea M să aibă exact 2012 elemente.

Soluţie:

a) Verifica îndeplinirea condiţiei (2) cu tabla operaţiei  ................................................................... 4p

(Daca efectuează unele înmulţiri de tipul ab cu a 
[image: image127.wmf]b
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 numai 2 puncte )

b) Aplicam (2)  pentru a = b = 1+i obţinând că 2i 
[image: image128.wmf]M
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 ................................................................... 1p

Aplicăm (2) pentru a = b = 2i obţinând ca -4 
[image: image129.wmf]M

Î

........................................................................... 1p

c) răspunsul este negativ deoarece puterile cu exponent natural ale numărului (-4 ) vor fi în M  ... 1p

4.
a)  Determinaţi a, b 
[image: image130.wmf]Î

R  astfel încât funcţia 
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să fie o primitivă a unei funcţii 
[image: image132.wmf]:
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b)  Să se calculeze 
[image: image133.wmf]2
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c) Să se demonstreze că lungimea graficului funcţiei 
[image: image134.wmf]:0,,()|sin4|
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 este mai mare decât 4.

Soluţie:

a) În mod necesar funcţia F este continua în x = 0 şi derivabilă în x=0  .......................................... 1p

Din relaţia 
[image: image135.wmf](

)

(

)

0

0lim

®

=

x

FFx

obţinem b = 0 ..................................................................................... 1p

Din condiţia de derivabilitate în x = 0 obţinem a = 1 ....................................................................... 1p

b) 
[image: image136.wmf]242
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Finalizare 
[image: image137.wmf]2
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=1   ................................................................................................................ 1p

c) Ţinând cont de forma graficului funcţiei sinus,  observam ca vom "urca şi cobori" de câte doua ori de la Ox la dreapta y = 1, deci lungimea graficului este mai mare decât 4 ................................ 1p
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