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Ecuaţii matriceale 

Dacă  , nA B M   (mulţimea matricelor pătratice cu n linii şi n coloane) şi A  este 

inversabilă, atunci: 

1. Soluţia ecuaţiei A X B   este 
1X A B    

2. Soluţia ecuaţiei X A B   este 
1X B A   

Sisteme de ecuaţii liniare. Forma matriceală 

Definiţii: 

-Un sistem de ecuaţii liniare este un sistem în care fiecare ecuaţie are gradul I în raport cu fiecare 

necunoscută 

-Forma unui sistem de ecuaţii liniare este: 
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     Forma matriceală este AX B  , unde: 
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este  Matricea termenilor liberi   iar  
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   este Matricea necunoscutelor  

În funcţie de existenţa soluţiilor sistemele sunt: 

1. Sisteme compatibile determinate = sisteme care au soluţie unică        (1 soluţie) 

2. Sisteme compatibile nedeterminate = sisteme care au mai multe soluţii 

3. Sisteme incompatibile = sisteme care nu au soluţii 

Sisteme de două ecuaţii cu două necunoscute. Metoda de rezolvare matriceală 
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Se scriu: matricea coeficienţilor   
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forma matriceală a sistemului :  A X B   

OBS:  dacă matricea A este inversabilă atunci se calculează 
1A

 , şi soluţia sistemului în acest caz 

este 
1X A B    

Exerciţiu model: 

Să se scrie în formă matriceală şi să se rezolve sistemul: 
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  rezultă A X B    

Studiem dacă A este inversabilă: 
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  rezultă că matricea A este inversabilă 

Calculăm matricea inversă: 
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Temă: 

Să se scrie în formă matriceală şi să se rezolve sistemul: 
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Sisteme de ecuaţii liniare _ CRAMER 

- un sistem de ecuaţii liniare de tip CRAMER este un sistem în care numărul de ecuaţii este egal cu 

numărul de necunoscute şi determinantul matricei sistemului este nenul (adică diferit de 0 ) 
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Matricea sistemului este 
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Dacă det 0d A   se calculează determinanţii asociaţi necunoscutelor, adică pentru 1x   

calculăm determinantul  
1x

d  , pentru 2x   calculăm determinantul  2xd  şi aşa mai departe. 

ixd  este determinantul lui A în care se înlocuieşte coloana coeficienţilor lui ix   cu coloana 

termenilor liberi. 
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Apoi se calculează : 
1 2

1 2; ;...;
d d d

nxx x

n

dd d
x x x     

Exerciţiu model: 

Să se rezolve sistemul: 
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Matricea sistemului este: 
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Concluzie: sistemul este Cramer 

Calculăm 
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Atunci soluţia sistemului este:  

 

2
1

d 2

2
1

d 2

4
2

d 2

x

y

z

d
x

d
y

d
z

  

  

  

 

Temă: 

1. Rezolvaţi prin metoda lui Cramer  
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2. Se consideră sistemul de ecuaţii: 
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. 

a. Să se determine m  astfel încât sistemul să fie de tip Cramer 

b. Pentru 5m    să se rezolve sistemul. 

3. Se consideră sistemul de ecuaţii: 
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. 

a. Pentru 0a   să se rezolve sistemul. 

b. Să se determine a  astfel încât soluţia sistemului să verifice relaţia: x y z   . 

Metoda lui GAUSS 

Metoda lui Gauss constă în aducerea sistemelor de ecuaţii liniare la o formă triunghiulară sau 

trapezoidală prin eliminarea (reducerea) succesivă a necunoscutelor. 
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Exerciţii model: 

1. 
2 3
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   reducem necunoscuta x din a doua ecuaţie 
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OBS. ecuaţia pe care o înmulţim şi o adunăm la altă ecuaţie, rămâne neschimbată. 

2. 
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  reducem pe x apoi pe  y 
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Înlocuim pe 1y   în a doua ecuaţie şi rezultă că 1z   şi apoi din prima ecuaţie 

1 1 3 1x x     . 

Temă: Să se resolve prin metoda lui Gauss sistemele de ecuaţii: 
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